Predictive_Analysis_Machine_Learning

How to effectively use Machine Learning to boost your predictive analytics? 

First let’s try to understand the differences between Machine Learning and Predictive Analytics

Machine Learning Predictive Analytics
It is an overall term encompassing various subfields including predictive analytics. It can be treated as a subfield of machine learning.
Heavily coding oriented. Mostly standard software oriented where a user need not code much themselves
It is considered to be generated from computer science i.e. computer science can be treated as the parent here. Statistics can be treated as a parent here.
It is the technology of tomorrow. It is so yesterday.
It is machine dominated by many techniques that are hard to understand but work like charm like deep learning. It is user dominated with techniques that must be intuitive for a user to understand and implement.
Tools like R, Python, SaaS are used. Excel, SPSS, Minitab are used.
It is very broad and continuously expanding. It has a very limited scope and application.

75% of Business leaders state ‘growth’ as the key source of value from analytics but only 60% of those leaders have predictive analytics capabilities. So what’s preventing the businesses from achieving predictive analytics capabilities? The major roadblock is applying the right set of tools, which can pull powerful insights from this stockpile of data. But first, a big data system requires identifying and storing of digital information (lots of!!). Using Machine learning and Artificial Intelligence algorithms, businesses can optimize and uncover new statistical patterns which form the backbone of predictive analytics.

Forms of Data Analysis

Organization with huge data can begin analytics. Before beginning data scientists should make sure that predictive analytics fulfills their business goals and is appropriate for the big data environment.

Let’s take a quick look at the three types of analytics –

Descriptive analytics – It is the basic form of analytics which aggregates big data and provides useful insights into the past.

Predictive analytics – Next step in data reduction; It uses various statistical modelling and machine learning techniques to analyze past data and predict the future outcomes

Prescriptive analytics – New form of analytics which uses a combination of business rules, machine learning and computational modelling to recommend the best course of action for any pre-specified outcome.

Neural networks – Building blocks of Data Analysis

Neural network is a system of hardware and software mimicked after the central nervous system of humans, to estimate functions that depend on huge amount of unknown inputs. Neural networks are specified by three things – architecture, activity rule and learning rule.

According to Kaz Sato, Staff Developer Advocate at Google Cloud Platform “A neural network is a function that learns the expected output for a given input from training datasets”. A neural network is an interconnected group of nodes. Each processing node has its own small sphere of knowledge, including what it has seen and any rules it was originally programmed with or developed for itself.

Neural Network for predictive analytics

In short neural networks are adaptive and modify themselves as they learn from subsequent inputs. For example, below is a representation of a neural network that performs image recognition for ‘humans’. The network has been trained with a lot of sample human and non-human images. The resulting network works as a function that takes an image as input and outputs label human or non-human.

Neural network - Image recognition

Building predictive capabilities using Machine Learning and Artificial Intelligence

Let’s implement what we have learned about neural networks in an everyday predictive example. For example, we want to model a neural network for banking system that predicts debtor risk. For such a problem we have to build a recurrent neural network which can model patterns over time. RNN will require huge memory and a large quantity of input data. The neural system will take data sets of previous debtors. Input variables can be age, income, current debt etc  and provide the risk factor for the debtor. Each time we ask our neural network for an answer, we also save a set of our intermediate calculations and use them the next time as part of our input. That way, our model will adjust its predictions based on the input that it has seen recently.

Neural network - Debtor risk analysis

Uses cases for Machine Learning based predictive analytics

As Machine Learning and Artificial Intelligence landscape evolves predictive analytics is finding its way into more business use cases. Coupled with Business intelligence (BI) tools such as Domo and Tableau, business executives can make sense of big data.

Some prospective use cases for ML-based predictive analytics are:

E-commerce –  Using ML businesses can predict customer churn and fraudulent transaction. Also predicting which product customer will click on.

Marketing – There are many examples of ML in B2B marketing. Common use case is identifying and acquiring prospects with attributes similar to existing customers. They can also prioritize known prospects, leads, and accounts based on their likelihood to take action.

Customer service – Satisfaction Prediction made by Zendesk uses a machine learning algorithm to process results of historical satisfaction surveys, learning from signals such as the total time to resolve a ticket, response delay, and the specific wording of tickets cross-referenced with customer satisfaction ratings.

Medical Diagnosis – Medical professionals can use a program modelled using ML to predict the likeliness of a particular illness. The model will use a database of patient records and will make predictions based on symptoms exhibited by the patient.

Organizations and technology companies are employing machine learning based predictive analytics to gain an edge over the rest of the market. Machine learning advancements such as neural networks and deep learning algorithms can discover hidden patterns in unstructured data sets and uncover new information. But building a comprehensive data analysis and predictive analytics strategy requires big data and progressive IT systems.

Leave a Reply